Mastery Perimeter Challenge

In each of the following problems, work out the perimeter of one small rectangle:

(a)

(b)

Area of whole rectangle

$$
=60 \mathrm{~cm}^{2}
$$

(c)

> Area of whole rectangle
> $=600 \mathrm{~mm}^{2}$

SOLUTIONS:

(a) There are two values: W (the width of the small rectangle) and L (length of the small rectangle).

The height of the 1 st tower is made of $4 W$ and $3 L$, which
equal $33(4 W+3 L=33)$
The height of the $2 n d$ tower is made of $2 W$ and only $1 L$. They
equal $13(2 W+L=13)$
So If we double the second tower then we will have $4 W$ but only $2 L$. It will equal 26 ($4 W+2 L=26$).
Therefore if we take away double the second tower away from the first tower, we will have one length and it will measure 7 cm .
$(L=(4 W+3 L)-(4 W+2 L)=33-26=7)$.
Now that we know what one length is, we can substitute $L=7$ into our equation for the height of tower $2(2 W+L=13)$.
If we take away the 7 we will have $2 W=6$. Then you divide both sides of this equation by 2 to find $W=3$.
To work out the perimeter, you will need to add $2 W$ and $2 L$.
This is $2 \times 3+2 \times 7$, equal to 20 cm .
(b) You can see that there are five rectangles. Since their
combined area is 60 cm 2 , this means that the area of one of the five rectangles is 12 cm 2 .
Then, we can see that the length of one rectangle
is the same as three widths. Therefore, the perimeter will be $2+6+2+6$ which is equal to $16 \mathbf{c m}$.
(c):If we call the length of the rectangle b and the width a then we can see $4 a=b$.
Then the width of the big rectangle is $4 a+2 a=6 a$ and the area is $6 a \times 4 a=24 a 2=600$.

Then $a_{2}=25$
So $a=5 \mathrm{~mm}$
$b=4 a=20 \mathrm{~mm}$
and perimeter of rectangle $=\mathbf{5 0 m m}$

