FACTORS

GET READY

2)
$$4 \times __= 32$$

3) $7 \times __= 42$

1) How many different ways can you put these counters into equal groups?

1 group of 63 groups of 22 groups of 36 groups of 1

3) 7 × <u>6</u> = 42

LET'S LEARN

Which of these numbers are factors of 14?

1 7 0.5 14 28 2 3 1 and 14 14

Find all the factors of 18 How do you know when you've found them all?

 1×18

Find all the factors of 18

 1×18 2×9

Find all the factors of 18

YOUR TURN

Have a go at questions 1 - 4 on the worksheet

Alex is thinking of a number between 30 and 40 It only has two factors.

What could Alex's number be?

Prime numbers only have 2 factors: 1 and themselves.

White Rose Maths

 $162 \div 5$

Numbers in the 5 times table end in 0 and 5

Is 3 a factor of 354?

 $354 \div 3$ $3 + 5 + 4 = 12 \div 3 = 4$

If the sum of the digits is divisible by 3 then Have a think the number will be divisible by 3

YOUR TURN

Have a go at rest of the worksheet

