Gold WILF : to find the nth term of a number sequence and apply this to find given terms.

Here is Fernando's example;

Term Number (n)	1	2	3	4
Sequence	2	5	8	11

The difference between each number is $\mathbf{3}$ so the rule ($\mathrm{n}^{\text {th }}$ term) will start with $\mathbf{3 n}$.
$3 n$ as a sequence is $\quad 3,6,9,12$

$$
\text { We have } \quad 2,5,8,11
$$

So to get the numbers we need, we have to subtract 1 . This must mean the full rule is:

$$
3 n-1
$$

For each of the following sequences;
a) work out the next 3 terms,
b) work out the $\mathrm{n}^{\text {th }}$ term,
c) use the $\mathrm{n}^{\text {th }}$ term rule to work out the $20^{\text {th }}$ term.

1) $3,5,7,9 \ldots$
2) $9,12,15,18 \ldots$
3) $7,11,15,19 \ldots$
4) $10,16,22,28 \ldots$
5) $1,5,9,13 \ldots$
6) $4,11,18,25 \ldots$
7) $2,7,12,17 \ldots$
8) $4,9,14,19 \ldots$
9) $7,5,3,1 \ldots$
10) $16,13,10,7 \ldots$

Write down the first five terms of the sequence with the following $n^{\text {th }}$ terms:
11) $3 n+6$
12) $2 n-3$
13) $-2 n+1$
14) $-5 n+12$

