If we were asked to find the $100^{\text {th }}$ term in a sequence, we'd be here all day.

If we describe the sequence using algebra, we can quickly find any number in the sequence.

When we describe a sequence algebraically we call it the Nth term
Nth Term

Starter

State the rule for the following sequences

1. $16,26,36,46,56, \ldots$
2. $8,11,14,17,20, \ldots$
3. $9,11,13,15,17, \ldots$
4. $0,4,8,12,16, \ldots$
5. $-1,4,9,14,19, \ldots$

$4 \quad 7 \quad 10 \quad 13$

If we were asked to find the $100^{\text {th }}$ term in this sequence, we'd be here all day.

If we describe the sequence using algebra, we can quickly find any number in the sequence.

When we describe a sequence algebraically we call it the Nth term

$$
\begin{array}{llllll}
1 & 4 & 7 & & 10 & 13 \\
3 & 3 & 3 & 3
\end{array}
$$

$3 n+$
This is the nth term of the sequence

$\begin{array}{lllll}3 & 7 & 11 & 14 & 18\end{array}$
 $\begin{array}{llll}4 & 4 & 4 & 4\end{array}$

$4 n+$
This is the nth term of the sequence

2
 12 17
 22 $\begin{array}{llll}5 & 5 & 5 & 5\end{array}$

$5 n+$
This is the nth term of the sequence

$$
\begin{array}{cccccc}
-2 & 4 & & 10 & 16 & 22 \\
6 & 6 & 6 & 6
\end{array}
$$

$6 n$

This is the nth term of the sequence

Finding the Nth term

-1) Find the nth term of the following sequences:

a) 4	7	10	13	16
b) 2	7	12	17	22
c) 4	10	16	22	28
d) 13	24	35	46	57
e) 1	9	17	25	33
f) 3	5	7	9	11
g) 10	21	32	43	54

- Answers:
a) $3 n+1$
b) $5 n-3$
c) $6 n-2$
d) $11 n+2$
e) $8 n-7$
f) $2 n+1$
g) $11 n-1$

Using Nth term

- The rule of a sequence is $3 n-2$
- Find the first 4 terms

$$
\begin{aligned}
& \cdot 3 \times 1-2=1 \\
& \cdot 3 \times 2-2=4 \\
& \text { - } 3 \times 3-2=7 \\
& -3 \times 4-2=10
\end{aligned}
$$

- Find the $15^{\text {th }}$ term
- $3 \times 15-2$

Remember the n tell you where you are in the sequence so if you see $n=100$, it will be the $100^{\text {th }}$ number in the sequence

How does this help us?

- If I know a sequence has a rule $3 n$ how could i find the $100^{\text {th }}$ term?
- If I know a sequence has a rule $5 n-3$ how could I find the $100^{\text {th }}$ term?

What about when the sequence goes down...

What is the $\mathrm{n}^{\text {th }}$ term of this sequence
$2,0,-2,-4, \ldots$
$0,-3,-6,-9, \ldots$

To finish

- Someone has missed the lesson. You have to send them a text about what you learned in this lesson. Use 160 characters (a text message) to tell them what you learned today.

