

 A progression of programming concepts and skills from Foundation to Year 6

Computing- Coding- Key Concepts, Skills and Approaches to Programming

These are the over-riding themes, concepts and approaches that under-pin all programming.
COMPUTATIONAL THINKING
Computational thinking is about looking at a problem in a way in which a computer can help us to solve it. It is defined as the process of formulating and solving problems by breaking them down into simple steps. This is a two-step
process:

First, we think about the steps needed to solve a problem. Then, we use our technical skills to get the computer working on the problem.

For a computer animation, for example, you’ll first plan the story and how it will be shot. Then, you’ll use the computer hardware and software to create the animation.
Computational thinking is not thinking about computers or like computers. https://youtu.be/91utNt5qshE

DECOMPOSITION
Breaking down into parts

In computing, decomposition is the process of breaking down

a task into smaller, more-manageable parts. It has many

advantages. It helps us manage large projects and makes the

process of solving a complex problem less daunting and much

easier to take on.

PATTERN SPOTTING
Spotting and using
similarities

Patterns are everywhere, for example, we use weather
patterns to create weather forecasts.
By identifying patterns we can make predictions, create
rules and solve more general problems.
Children need to be able to identify repeating patterns in
a list of commands to understand how this could be
made more efficient using a repeat loop.

ABSTRACTION
Choosing what’s
important

Abstraction is about simplifying things –
identifying what’s important without
worrying too much about detail.
A school timetable is an abstraction of
what happens in a typical week. It shows
key information about classes, teachers,
rooms and times but ignores further
layers of detail such as learning objectives
and activities.

 ALGORITHMS
How to get it done

An algorithm is a sequence of instructions or a set of rules to get something
done.
You’ll favour a particular route home from school – you can think of it as an algorithm.
There are plenty of alternative routes home, and there’ll be an algorithm to describe each
one of those too. There are even algorithms for deciding the shortest or fastest route, such
as form the basis of satnav systems.
Algorithms are written for a human, rather than for a computer to understand. In this way,
algorithms differ from programs.
The main difference is between the two is that an algorithm is a step-by-step procedure for
solving the problem while programming is a set of instructions for a computer to follow to
perform a task. A program could also be an implementation of code to instruct a computer
on how to execute an algorithm.

DEBUGGING
Finding and fixing errors

Errors in algorithms and code are called

‘bugs’, and the process of finding and fixing these is called
‘debugging’. Getting pupils to take responsibility for thinking
through their algorithms and code, to identify and fix errors is
an important part of learning to think and work like a
programmer:

1. Predict what should happen.
2. Test -find out -exactly what happens when a program is

run
3. Work out where something has gone wrong.

4. Fix it.

LOGICAL REASONING
Predicting and analysing

If you set up two computers in the

same way, give them the same instructions

(the program) and the same input, you can pretty much
guarantee the same output. This means that they are
predictable. Because of this we can use logical reasoning
to work out why something happens. Part of logical
reasoning is the ability to use existing knowledge to
make reliable predictions about future behaviour of a
system.

EVALUATING
Making
judgements

Evaluation is about making judgements,
in an objective and systematic way where
possible.
Children need to evaluate the
effectiveness of their programs in solving
a specific task. Pupils should be
encouraged to reflect on their programs-
do they do what they wanted? Is there a
better way or improvements that can be
made?

TINKERING
Exploring and applying learning

We often try out something new to discover what it does and how it works: this
is tinkering. It’s closely associated with logical reasoning. Pupils build up experiences of
cause and effect: “If I move this, then this happens.” It’s a big part of independent learning,
without your lead. For young children, it’s the vital play-based experimentation phase, full
of questions and surprises. Ideas which seem wrong can be tried, just to see what happens.

As pupil progress through school, tinkering is more-purposeful exploration and making,
often through trial and improvement. It helps us to see our use of technology as being
about developing our own understanding, rather than getting a ‘right’ answer; we may be
able to do things in many ways. When using technology which we’ve tinkered with, we’re
more likely to be open to novel and innovative solutions.

Coding language/ app progression
 Nursery Reception Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

O
n

 s
cr

e
en

co
d

e

Beebot app

 Hopscotch

Micro:Bits

• Applied to DT fairgrounds

model

• Additional of
programmable lights

Edison robots

Use of sensors for robot to react

independently.

P
h

ys
ic

al
/

ap
p

lie
d

co
d

in
g

Beebots

Beebots

Crumble computers

Micro:Bits

https://youtu.be/91utNt5qshE
https://apps.apple.com/gb/app/bee-bot/id500131639
https://www.scratchjr.org/
https://studio.code.org
https://heymannprimary-my.sharepoint.com/www.codeforlife.education/
https://www.gethopscotch.com/
https://scratch.mit.edu
https://scratch.mit.edu
https://meetedison.com
https://www.tts-group.co.uk/search/?q=beebot&searchType=simple-search
https://www.tts-group.co.uk/search/?q=beebot&searchType=simple-search

 A progression of programming concepts and skills from Foundation to Year 6

 FS Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

SE
Q

U
EN

C
IN

G

Sequence forwards and turns e.g.
with Beebot

Predict the outcome of a set of
instructions and test the results.
EG: ‘What shape would this
make?’

Use symbols to represent an
instruction e.g. → for forward
and turn.

Know how to clear the code

Decompose by breaking the code
down into chunks (1 step at a
time)

1) (clear)

2) (clear)

3) (clear)

Follow a given sequence including
forwards, turns and backwards.
Know that the order of instructions
is important.

Write a sequence for others to
follow.

Decompose by breaking the
sequence into chunks.

Predict the outcome of a set of
instructions and test the results.

Use symbols to represent an
instruction in the correct order.
e.g. → for forward and turn.

Know how to clear the code

Sequence instructions
including forwards,
back and turns more
efficiently.

Understand that a
sequence of
instructions needs to
be clear, precise and
unambiguous.

Understand that the
order in which
instructions are given
will make a difference
to the outcome.

Understand that the
direction and amount
of turn is relative to
the position of object
– on screen or in real
life – that is being
moved.

Sequence instructions in
the correct order with
increasing number of
commands.

Understand that a
sequence of instructions
is called an Algorithm and
that the instructions for a
computer to follow is a
program.

Amount of turn is given as
a number of quarter turns,
not in number of degrees.

Sequence instructions in the
correct order to create an
animation sequence, draw a
shape or solve a problem.

Understand that a sequence of
instructions is called an
Algorithm and that the
instructions for a computer to
follow is a program.

Amount of turn in an program to
be given as a number of
degrees.

Be able to assess success of
given instructions and identify
and correct any errors that
occur.

Be able to evaluate the
effectiveness of an algorithm
written by their peers in class.

Understand and use algorithms which
include:

• Repeat loops

• Event handling

• Selection

Understand and use algorithms which include:

• Repeat loops

• Event handling

• Selection

• Variables
Understand and use interrupts when certain events
occur.

R
EP

EA
T

LO
O

P
S

 Understand how to
read and interpret a
repeat in loop in an
algorithm (set of
instructions)

Use a number to
specify movement
rather than repeated
commands (e.g. in
Scratch Junior
forward 4 rather than


Understand informal
notation for showing a
move is repeated.
E.G
[→] x 3 = move right 3
times

Understand what simple loops
and repeats are and how they
can make a program more
efficient.
Use count controlled repeat
loops

Pattern spotting - be able to
identify which commands need
to be repeated and how many
times to achieve a desired end.

Use the instruction repeat until …

Example code from Scratch3

Read, write and debug nested loops
(loops within a loop)
 e.g. creating an algorithm to draw a
square, then put this algorithm inside
another loop to create a repeated
pattern.

Use a variable and operators (the green blocks in
Scratch) within a loop to govern termination:

Example code from Edscratch for Edison

https://enablingenvironments.files.wordpress.com/2015/02/img_2793.png
https://enablingenvironments.files.wordpress.com/2015/02/img_7630.jpg

 A progression of programming concepts and skills from Foundation to Year 6

Se
le

ct
io

n
 (

e
ve

n
t

h
an

d
lin

g)
 Know that when I press GO the

sequence will run.

Use different action bricks in the
Duplo train to make things happen

Know that when a key (e.g. space
bar) is pressed, the
sprite/character will move.

Control a character in
a game or animation
where clicking make
something happen.

Be able to create an
animation or game where
clicking on certain
‘triggers’
(objects/sprites/keys) will
cause something to
happen.

Be able to use a range of inputs
to start an event or control a
character e.g. space bar, mouse
click, ipad press.

Threads (parallel execution)
– Allow more than one event to
happen at the same time e.g.
having more than one set of
blocks or instructions running at
the same time.

In Scratch use a broadcast to co-
ordinate events in a program with
more than one sprite(one event causes
another to happen eg. Game over)

Example code from Scratch3

Use events to interrupt program and run sub routines
Edison:

Example code from Edscratch for Edison

C
o

n
d

it
io

n
al

 S
ta

te
m

en
ts

 Understand that we can make
actions occur only under certain
conditions.

On Hopscotch, there are
‘Whens’ for events that happen
on your iPad
eg
WHEN the iPad is shaken, play a
pop sound.
WHEN the up arrow is pressed,
make the character jump.

Use ‘if, then, else’ statements
 e.g. in a quiz: if answer correct…

Example code from Scratch3

Use selection to govern different events using the ‘if /
else’
Eg. Microbit 8 ball

Example code from Micro:Bit Makecode

V
A

R
IA

B
LE

S

 Understand what variables are and
how to use them.
(orange blocks in Scratch).

Example code from Scratch3

Understand what variables are and how to use them.

Eg. Use a speed variable to control fairground ride
speed up and down

.
Example code from Micro:Bit Makecode

https://enablingenvironments.files.wordpress.com/2015/02/img_2795.png

